If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5+4x=180
We move all terms to the left:
x^2-5+4x-(180)=0
We add all the numbers together, and all the variables
x^2+4x-185=0
a = 1; b = 4; c = -185;
Δ = b2-4ac
Δ = 42-4·1·(-185)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{21}}{2*1}=\frac{-4-6\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{21}}{2*1}=\frac{-4+6\sqrt{21}}{2} $
| 36=2e | | 59m=236 | | (3,3)m=9 | | X^4-7x^2+1012=0 | | x+3-5/6=8 | | 5x-1.5x=100000 | | 5m-4=26(3,4,5) | | -8p-8p=160-16 | | 0.5(4x+1)(2x+1)=13 | | 8(0)+3y=0 | | 31=5w+-24 | | 11r+-41=-8 | | (3x+14)=(2x+62) | | 20=12(x)=12(3x) | | 14÷2-3×2=l | | 6x-12=3x+25 | | (x-1)(x-2)=(x-3) | | 7(2x-3)=2.3(x-3) | | (5x-24)=(6x-46) | | 2x+1=75.5 | | 0.5(2x+1)+(2x+1)=13 | | 60÷5x=24 | | 3y–15=2y+5 | | x^2+5x-650=0 | | 2x–4=4+100 | | y=1/2=2 | | 0.5(4x+1)+(2x+1)=13 | | 2x-6+9=-50 | | 0=(2/(x^-3))-(1/(4(x^-1.5))) | | 0=(2(x^-3))-(1/(4(x^-1.5))) | | 0=(2(x^-3))-)-(1/(4(x^-1.5))) | | v=1,4-2,5 |